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A theory for the formation of rings at equilibrium is proposed. The formalism previously derived
by Wertheim [J. Stat. Phys. 35, 19 (1984); 35, 35 (1984); 42, 459 (1986); 42, 477 (1986)] is used
together with a way of approximating the ring graphs which are found. The theory is developed
to treat two model molecules: spheres with two attraction sites, each mediating an interaction very
like a hydrogen bond, and chains of spheres with a similar site on the first and on the last sphere.
Unlike previous work these molecules are allowed to form ring structures as well as chains. For
both models the free energy is a simple analytical expression in terms of the fraction of attraction
sites bonded, very like other work within the Wertheim formalism. The fraction of sites bonded
is obtained from mass action equations. Phase diagrams are shown, and we discuss the difference
in phase behavior between that predicted by the theory proposed here, and that of work which
excludes rings. It is found that if the possibility of forming rings is excluded a very different phase
diagram can be produced. In particular, the vapor pressure far from the critical point is severely
underestimated. This corresponds to the formation of a high proportion of rings in the gas phase
while the liquid phase remains dominated by chains. The case where the model molecules can only
form rings is also discussed, and expressions for the free energy derived. In the limit of complete
association this case reduces to an earlier result, derived and tested against simulation data by the
authors. The motivation of the work on the first model is the formation of rings by both hydrogen
fluoride and sulfur. The second model is motivated by the possibility of intramolecular bonding in
organic compounds with two functional groups capable of forming hydrogen bonds separated by a
flexible carbon backbone.
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Thermodynamic perturbation theory for association into chains and rings

I. INTRODUCTION

Some of the liquids which are the most interesting and
difficult to understand are those that hydrogen bond.
Many organic liquids, such as alcohols, and some inor-
ganic liquids, such as hydrogen fluoride, form hydrogen
bonds. The strong and highly directional nature of the
hydrogen bond is very different from that of the slowly
varying van der Waals interactions; the internal energy
of a hydrogen-bonding system is strongly dependent on
temperature. As we would expect this sensitivity of the
energy means that hydrogen-bonding fluids show phase
behavior not seen in fluids without hydrogen bonding,
such as the so-called closed-loop behavior [1].

Recently, one of us has studied the phase behavior of
aqueous mixtures of alcohols [2], using the approach de-
veloped by Wertheim [3,4]. Wertheim went back to the
fugacity expansion of the grand partition function and
eliminated the fugacity in favor of a set of densities,
each corresponding to a different bonding state of the
molecule. The resulting free energy was expressed as an
infinite series of graphs with each point carrying one of
the set of densities. The fugacity expansion had, much
earlier, been reduced to an expansion in the total den-
sity by Morita and Hiroike [5]. The graphical expansion
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has been used extensively to obtain the thermodynamical
functions and the structure of many liquids [6].

Although the expansion of the free energy in terms of
an infinite series of graphs derived by Wertheim is exact,
a tractable theory requires that only a subset of the in-
finite series of graphs be selected. This subset should be
in some sense that of “lowest order” and all the graphs
must be evaluated to obtain the free energy. A graph
of m vertices represents an m-body integral, which for
m > 2 can be difficult to evaluate. Consequently, almost
all of the work to date involves the lowest order chain
graph, a two-body integral. Despite involving only two
vertices this graph accounts for chains of molecules of
arbitrary length, a major advantage of Wertheim’s for-
malism. There has, however, been some work beyond this
level [7,8], which has gone to the next highest order in
the approximation for chains and considered star-shaped
molecules.

What has been excluded from previous work is the
possibility of the formation of rings of molecules. There
is, however, evidence that hydrogen fluoride in the vapor
phase exists mainly as rings of molecules [9]. Clearly, this
provides motivation for studying the equilibrium between
free monomers and rings and chains of monomers. Al-
though the previous ideas account adequately for the be-
havior of simple molecules, such as alkanols (see Ref. [2]),
we cannot expect them to work well for hydrogen fluo-
ride. In the following section we propose an approximate
theory, within Wertheim’s approach, which incorporates
a ring graph. This accounts for rings of monomers of
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one length only, e.g., in the case of hydrogen fluoride we
might select the most stable ring size and incorporate the
corresponding ring graph. This is analogous to studies of
the equilibrium between long chains and eight membered
rings of sulfur atoms [10]. The theory presented in Sec. II
may be considered as an extension of these studies to in-
corporate some but not all of the excluded volume effects.
The problem of a fluid in which rings of any length are
present is not treated explicitly.

A related and interesting problem in the study of flu-
ids is that of intramolecular bonding where a bond is
formed between two parts of the same molecule. This
cannot be ruled out in any molecule with two functional
groups which are capable of hydrogen bonding and are
separated by a sufficiently long and flexible intermediate
segment. An example might be ethoxybutanol, where the
molecule may fold over allowing the oxygen of the ethoxy
group to bond with the hydrogen of the alcohol group. A
theory for intramolecular bonding is proposed in Sec. III.
In Sec. IV some example phase diagrams are discussed.
The phase diagrams are calculated from the theory de-
veloped in this paper as well as from the previous theory
which excludes the possibility of rings.

II. ASSOCIATION INTO CHAINS AND RINGS

We start our discussion with a fluild composed of
monomers, each of which has, in addition to a hard re-
pulsive core, two interaction sites; this is the model of
Wertheim [4,7]. The two sites, which are distinguish-
able, are labeled A and B. Each of these sites mediates
a short range interaction between the monomers so that
if two monomers are almost touching and they are ori-
ented so that the A site of one is directed towards the
B site of the other the two sites may overlap forming a
strong bond. This bond will have an energy many times
the thermal energy of a monomer. Once two sites are
bonded no third site may bond to either of the two sites,
i.e., the bonds are saturable like chemical bonds. The
only case treated here is that of a spherical hard repul-
sive core although the formalism would be the same for
any other shape. The two sites on the sphere subtend
an angle at the center of the sphere ¢; this angle may
be fixed at a definite value or it may be allowed to vary,
giving the monomer an internal degree of freedom. This
makes very little difference to the formalism, and only
the case where £ may vary freely will be considered here.
This case is exactly the model considered by Wertheim
in Ref. [7].

Wertheim has reformulated the statistical thermody-
namics of an associating fluid [3,4] in terms of separate
number densities for each bonding state of the monomer
molecule. For the two-site model there are four possible
bonding states with corresponding number densities: nei-
ther of the two sites bonded with a corresponding number
density of po; site A bonded but not site B with p4; site
B bonded but not A with pp; and both sites bonded with
paB. A site of type A may bond to a site of type B but
A—A and B—B bonding is not allowed. The actual ex-
pressions for the thermodynamical functions are written

in terms of combinations of these densities,

00 = pPo,

o4 = pa+ po,

oB = pB + po,

or = paB + pa+ pB + po = p, (1)

where p = N/V is the total number density, i.e., the total
number of monomers N divided by the volume occupied
by the fluid V. The difference in Helmholtz free energy
of the fluid, A, and of a fluid of molecules with identical
repulsive cores but without the attraction sites, Apg, is
given exactly by [7]

_ oo(1) _
ﬂ(A—AR)—/(ap(l)lnm+ar(1) oa()
0’_4(1)0’3(1)

ao(1) )d(l)

—c© 4+ cg). (2)

—op(1) +

The singlet densities are given as functions of the posi-
tion of the center of the sphere, the orientation of the
molecule, and the angle subtended by the sites, all repre-
sented by the notation (1). The densities 09, 04, and op
do not depend on £ if it is allowed to vary freely; the same
is true for or in the reference system. However, p4p and
hence or in the associating fluid will depend on £ in a
more complex manner: the molecule bonded at one site
will exclude the molecule bonded at the other for some
values of £. Thus or differs in the associating and refer-
ence fluids. Note that the densities inside the logarithm,
oo(1) and or(1), have been averaged over £. 8 = 1/kT
where k is Boltzmann’s constant and T is the temper-
ature. c(® is the sum of all irreducible graphs on field
points [4]; each pair of points 1 and 2 may be connected
by an fr(12), Fap(12), or Fp4(12) bond and each point
carries a factor 0 where Q is the complement of the set
of sites bonded at that point.
The bonds fr(12) and F4p(12) are defined by

fr(12) = ePous(D) _ 1, (3)
and
Fap(12) = e #ms08(Boastd _) (g

and similarly for Fp4(12). ¢ns(12) is the hard-sphere
potential and ¢ 45(12) is the site potential, here a square
well positioned off the center of the sphere [11]. cg) is
the subset of c(®) with only reference system bonds, fg.
—chg’) is the excess part of the reference system free
energy which is known. The theory presented here is a
perturbation theory [6], so that if the free energy and pair
distribution function of the reference system are known,
the free energy of the associating system can be calcu-
lated. Thus only the difference between the two graph
sums concerns us,

Ac® =0 _ cg). (5)
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In order to proceed the graph sum Ac(®) must be ap-
proximated; previous approximations have included only
graphs which correspond to chains [7]. Thus the the-
ory neglects any effect due to the formation of rings of
molecules by assuming that no rings are present. An at-
tempt is made to include rings, to evaluate the number
formed, and to determine their effect on the thermody-
namical functions and the phase behavior. The corre-
sponding ring graph must be included to allow a ring to
form in the theory. Unfortunately, ring graphs are irre-
ducible so for every different ring length a separate graph
must be included. Here, for simplicity, the molecules are
only allowed to form one species of ring comprising n
molecules. Although this situation is not particularly re-
alistic for our model, some substances such as hydrogen
fluoride seem to form rings of predominantly one or a few
sizes [9]. The graph for a ring of n monomers at a density
low enough that interactions between the ring and other
molecules may be neglected is

X / 00(1)- - 00(n)Fap(12)- - Fap(n1)d(1)-- - d(n).

(6)

Only nearest neighbor interactions are included and
the excluded volume interactions between nonadjacent
monomers are ignored. For higher densities molecules
in the ring will interact with the surrounding molecules.
To progress it is assumed that the indirect interaction
between each successive pair of monomers around the
ring, which is mediated by the surrounding fluid, can be
treated independently [12]. If this pair interaction is then
approximated by its value in the reference fluid the ring
graph Eq. (6) may be decorated to yield

%/00(1) -+ 0o(n)Fap(12)y(12) --- Fag(nl)

xy(n1)d(1) - - - d(n), (M)

where y is the reference fluid indirect or cavity distribu-
tion function [6,13]. Using the reference fluid distribution
function ignores any change in the monomer-monomer
distribution upon chain formation. It is perfectly possi-
ble to just use this graph for Ac(® in which case all the
fluid is allowed to do within the theory is to form rings
of length n. For greater generality the case where the
monomers can also form chains of any length is treated.
To do this the lowest order graph for chains is included
in Ac(9; this graph corresponds to making the same ap-
proximations made earlier in decorating Eq. (6). The
corresponding expression for Ac(®) becomes

Ac® = / 04(1)o5(2)Fap(12)y(12)d(1)d(2)
+% /00(1) - ao(n)Fap(12)y(12) - - -

xFap(nl)y(nl)d(1)---d(n). (8)

The first term on the right-hand side is the first-order
chain graph; it is the only graph in the first-order ther-

modynamic perturbation theory (TPT1) of Wertheim [4].
At equilibrium the free energy must be stationary with
respect to variation in the densities 0 4,05, and og; the
free energy must, of course, be at a minimum. Therefore,
by functional differentiation of Eqs. (2) and (8) with re-
spect to g and o4 we find

R
xy(12) - Fap(nl)y(nl)
xd(2) - -d(n), )
and
_ f;ﬁ((ll))z / o8(2)Fap(12)y(12)d(2),  (10)

respectively. These two equations are those of mass ac-
tion. It may be verified that if oo(1)x [Eq. (9)] is added
to 04(1)x [Eq. (10)], the intuitively obvious partition
of the total number density among the various bonding
states is obtained. Putting Eq. (9) and Eq. (10) in Eq.
(8) gives

o [ (eaos()
A /(wao(l) A(l))dm
zu(l)oB(l)) .

o/ ("F‘” T T ()

and then substituting this result in Eq. (2) we find

B(A— Ag) = /':Up(l)ln ZE% +or(1) (1 - %)
—op(1) + 5’—‘7(1‘17)00(—’13)(1)] d(1). (12)

In order to evaluate the free energy, the integral Eq. (7)
or equivalently the one in Eq. (9) must be determined
so that self-consistent solutions of the densities are ob-
tained.

In the previous theory for chains (TPT1), the n — 1
sphere-sphere contacts in a chain of n spheres were as-
sumed to be independent, an assumption which greatly
simplifies the problem. Here, however, if we consider any
n—1 of the n contacts, the bond angles £ are constrained
so that the first and nth spheres are close enough to each
other to form a bond. Hence, the integral of Eq. (9) is
treated as n “independent” contacts subject to the con-
straint that n — 1 of the bond angles are such that the
first and nth spheres are near contact. If we allow the
angle £ to vary freely from 0 to =, i.e., we ignore the ex-
cluded volume interaction of the (i — 1)th and (i + 1)th
spheres around the ith sphere, the system will behave as
a freely jointed chain [10]. The distribution of the vector
between the first and nth sphere of a freely jointed chain
is known; it is given by the expression of Treloar in [10].
So the right-hand side of Eq. (9) becomes

%00(1) o 0o(1") (K Fapye) Wa_1, (13)
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where K is the bonding volume, i.e., the volume of
overlap of the bonding sites on two spheres, Fyg =
exp(—esw/kT) — 1, where esw is the square-well depth
[11], and y. is the value of the cavity distribution func-
tion between two spheres at contact. W,,_; is the value of
the end-to-end distribution function for a freely jointed
chain of n — 1 links, when the end links are the length
of one link apart. The expression of Treloar [10] for this
separation of the ends is

l

_m(m-—1)
Won = 8w Z

(<17 [m-1-25]""2
] e M

i=0
for ! the smallest integer which satisfies

lzm—;l—l. (15)

The link length is equal to the diameter of a sphere which
we take to be our unit of length. The notation (1*) rep-
resents a point displaced by a unit vector from (1). Also,
although y is not a function of g, 04, or op, as it is a
reference system function, it does depend on or. There-
fore Eq. (13) should be written in terms of a product of
y(i2*)’s for each pair of spheres, where (ii*) denotes the
positions of the two spheres, () and (:*). Equation (13)
is therefore sufficiently general to include a spatially vary-
ing 09, 04, and op but not or. Note that the original
integral has been split into n pair integrals, each of which
is over the small site-site overlap volume K, plus a col-
lective part W,,_;. The density oq, the pair distribution
function, and, in the case of the nth bond, W, _; will
vary over the overlap volume but this variation will be
small. The effect of this variation has been evaluated for
the original theory, without rings, and it was found to be
small [11], so we assume 0y, ¥, and W,,_; are constant
and equal to their values at sphere-sphere contact. In
a homogeneous fluid the dependence of the o densities
disappears so here we have from Egs. (9), (10), and (12)

ar TA0B

- =" YKF "W,—
7o = 0o (KFaBYc)"Wa-1, (16)
oB
-1+ == aBKFAByc, (17)
Oo
and
M=1ﬂﬂ+(l_l) _ 9B, 9498 (g
N or n or noeor

respectively. Equations (16) and (17) may be cast in
terms of polynomials in X¢ = o¢/or and X¢ = og/or;
note that 04 = og. The polynomials may then be solved
to give values of Xy and X, which after being inserted in
Eq. (18) give the free energy. Equations (16), (17), and
(18) may also be differentiated with respect to density to
give the pressure p; the standard thermodynamic relation
p=—(0A/8V )N, is used. The resulting equation gives
p in terms of derivatives of the o densities with respect to
the density. The corresponding derivatives of Egs. (16)
and (17) thus have to be determined.

It may be verified that Eq. (18) gives the correct low
density but strong association limit; however, Egs. (9)
and (10) are both still approximate. It is known from
studies in polymer physics [16] that a chain with excluded
volume interactions is swollen at low density. Our ap-
proximation neglects these excluded volume interactions,
and, consequently, will be poor at low densities; it will
overestimate the probability that the two ends of a chain
will be near contact, which is a particular problem for the
ring graph. At high densities the approximation should
be rather better for a long chain with excluded volume
interactions because its behavior is similar to that of the
Gaussian chain.

It has been mentioned earlier that if the chain graph
was omitted from Ac(®) the fluid would form only rings.
If indeed the first term in Eq. (8), the chain term, is
removed and the procedure repeated for the new free
energy functional, it may easily be verified that in place
of Egs. (16), (17), and (18) we obtain

o A0 _
X _ZA%E — 62 (KFapye)"Wa-1, (19)
g9 Oo
~1+ 72 =y, (20)
oo

and

ﬂ(A;’AR) =1n:_§+ (1_%> (1_3—3). (21)

Clearly Egs. (19) and (20) may be combined to give

%L 1= o5 (K Fapyo)" Wo-r. (22)

These simple expressions for the free energy of the ring-
forming fluid may again be differentiated to obtain the
pressure.

The limit of complete association into rings is now con-
sidered. In this limit the second term on the left-hand
side of Eq. (22) may be neglected and the nth root taken
to yield an expression for op. Putting this in Eq. (21)
we find

BAAD - (ot (1-2). @

plus constant terms. This result was obtained previously
by the present authors via a different approach [12].
Another pertinent question regards the formation of
many sizes of rings. Incorporating the corresponding
graphs in Ac(®) is straightforward; Ac(®) simply becomes
a sum over ring graphs, plus a chain graph. As before
by functional differentiation of the free energy two mass
action equations are obtained which may be used to de-
termine 04 and o¢. Unfortunately, the greater complex-
ity of the free energy means that the mass action equa-
tions cannot be simply back substituted into the free en-
ergy functional, a minor problem since, if 04 and o are
known, Ac(®) may be evaluated directly. A more serious
problem is that in order to treat a fluid which can form
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rings of arbitrary size the sum over rings must be con-
tinued up to a value of n sufficiently large so that the
number of rings of this length is negligible. If the degree
of association is large with very few free monomers this
may require the sum to extend up to very large values of
n. In the limit of complete association the decline in the
number of rings of length n is only a power law, not an
exponential [17].

So far the case in which £ can vary freely has been
treated extensively but the formalism is virtually identi-
cal for molecules with a fixed £ [7]. The expressions are
actually a little simpler as the terms inside the logarithm
of Eq. (9) do not need to be averaged. Thus Egs. (16),
(17), and (18) can be used as they stand for molecules of
fixed £ provided the appropriate W,,_; is used. The prob-
lem of a chain in which successive links are constrained to
be at a fixed angle has again been treated in connection
with polymer physics [10].

III. ASSOCIATING CHAINS WITH
INTRAMOLECULAR BONDING

The system considered now is a fluid of chains of n
hard spheres where each chain has an interaction site of

-} (n)

Friy(12)--

type A on the first sphere and a site of type B on the
last sphere. Each chain may exist in one of five bonding
states: neither site bonded; site 4 but not B bonded;
site B but not A bonded; both sites bonded, each to a
site on another chain; and the two sites bonded to each
other closing the chain to form a ring molecule. Only
site A—B bonds are allowed but no A—A and B—B
bonds. Associating chains have been studied previously
[14] but the chains were not allowed to form rings. The
free energy is determined using a procedure similar to
the one outlined in the previous section, with the same
approximation for the ring graph. However, in order to
form a chain we start from a mixture of n species; each
species 7 has an identical hard-sphere core and bonds only
to the (z — 1)th species via its A type site and the (i +
1)th species via its B type site [15,13]. There are equal
numbers N of each species of monomer. Thus the degree
of association of all n bonds can be controlled separately:
we force n — 1 of the bonds to complete association in
order to form a chain, leaving only the two sites at the
ends of the chain able to bond reversibly.

The following approximate free energy functional is
used:

AW 4oy

(1)~ o5(1) - o3(1) + ZA SR

-Fapy(n1)d(1)---d(n). (24)

The superscript a is used to denote the species; note that the bonding Mayer f function F4p depends on the species
of the two spheres. In Eq. (24), o + 1 is taken as 1 for & = n. If all F4p’s are equivalent we recover Eq. (2). As
before the functional derivatives of the free energy with respect to o and 0§ are obtained as

Z?EZ; B UA(S;)(Z?(Q) /03(1) ot Y a—1)os T a+ 1) 0
xy(nl)d(1)---
and
._1+Z:128; :/ a+1(2) aa+1(12)y(12)d(2). (26)

These are the mass action equations which determine the
self-consistent densities. Substituting Eqs. (25) and (26)
into (24) we find

a=an) =3 [ (oreom S
roR(1) - agu))d(l)
/<1(1) 1}1_%)%2)(1(1). (27)

dla—-1)d(a+1)---

2(n)Fya(12)y(12) - -- F3p(nl)

d(n),

The species superscript on the ¢’s in the second term is
arbitrary, and the difference inside the parentheses is the
same for all species; it is actually the number density of
rings within our approximation. The chain is now formed
as in Ref. [13], and Eq. (26) becomes

(28)

Ug( ) =1+ Ayttt (1%), a#n.
o

This is for association at contact, and the parameter A
controls the extent of bonding. For very large values of A
we may neglect the 1 and invert the expression to obtain

og(1)

m a;én.

o5(1) = (29)
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Now for o = n from Eq. (26) we obtain

Ug(].) 1 *
a5 (1) B
where
A = KFygy.. : (31)

The distribution function in the bonding volume has been
approximated by its value at contact, and the sites are
square wells so FX’; is constant throughout K. In the
case of bonding at contact, Eq. (25) for @ = 1 becomes

1) = Za(l)op(1)
FO="an

X (Aye)" Wn_1A. (32)

+0og(1) - 05(17)
If Eq. (29) is substituted in Eq. (32) we find

op(1)
1+05(1)A

0‘%-(1) — 0'}‘(1)0'13(1)

e Wo_iA.  (33)

But

1
T4 (1) *
=1+4+0%(1%)A, 34
as may be verified by functional differentiation of the free

energy with respect to 0. Using this result and the fact
that 0% (1) = o4(1) we obtain

a%(l)=a},(1)+a}3(1)a}9(1*)A+1 o5(1) W,_1A.

+o5(1)A
(35)

For a homogeneous fluid o0 and or are no longer func-
tions of the coordinates (1), and Eq. (35) may therefore
be written in terms of the parameter X = o}/of. A
third-order polynomial in X results which may be solved
to give X.

Substituting Eqgs. (29) and (33) into (27) for the free
energy we have

op(1)

B(A— Agr) = /[O’r(l) In (

Note that g = 0 for a # 1, and that the species super-
script on or is dropped as all op’s are the same. In the
present approximation £ is allowed to vary freely for all
densities, even or. Therefore all densities are indepen-
dent of ¢, and the distinction between o(1) and (1) thus
disappears. For a homogeneous fluid

ﬂ_(*%%_) = — (n—1)In(orAg) + In <
X

— W,_
1+ XorA !

_X
1+ XorA

+n—X — A. (37)
The parameter A, which is in effect an integrated energy
of association, is a constant; it therefore has no effect
on observable properties and may be discarded. Again
Egs. (35) and (36) can be differentiated with respect to
density to give the pressure.

In the limit of low density but strong association Eq.
(37) gives the correct result for intramolecular bonding
but Eq. (35) is still approximate. The free energy of a
gas of chains at a density low enough that the excluded
volume interactions between chains are negligible is given
exactly in terms of X by Eq. (37). However, the excluded
volume interactions within a chain will remain, so that
Eq. (35) will still be approximate.

A fluid of chains which can only self-associate, i.e., the
chains can only close to form rings, is now considered.
This is treated by the free energy functional of Eq. (24)
but without the @ = n term in the second sum. This

a(1)
1+o3(1)A

o Owe) 11+ o};(l*)A]) * ""F“)] 41)

- [aman - [ (

W,._IA) d(1). (36)

prevents the first and nth spheres from bonding except
to form a ring. If the previous procedure is repeated for
a new functional we obtain the new mass action equation
as

1=X+XW,_1A, (38)

and the free energy as

&4%“) = —(n—1)In(opAye) + (n — 1) + In X.

(39)

The first two terms of the free energy account for the for-
mation of the chain, and only the last term arises from
the ring-closure equilibrium. If the limit of complete as-
sociation is taken our earlier result is again obtained. It
is a notable feature of Wertheim’s formalism that the-
ories based on it give accurately the limit of complete
association. Computer simulations have been performed
on rings in this limit. The present theory was found to
be in excellent agreement with simulation data for the
equation of state of small rigid rings. It is also argued in
Ref. [12] that the theory will work well for flexible rings
even if they are large.
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IV. NUMERICAL CALCULATIONS

For the associating monomers Egs. (16) and (17) are
solved numerically using an iterative scheme. The result-
ing self-consistent densities are substituted in Eq. (18) to
yield the free energy. The appropriate derivatives with
respect to density are then solved to yield the pressure.
The reference fluid of hard spheres is well known; the free
energy and pressure are required as well as the distribu-
tion function at contact [18,11]. In order to study the
effect of the association on the phase diagram, a mean-
field term is added to the free energy, of the form [11]

,BAMF
N

= —Bemrn, (40)

where 7 = m/6p and the diameter of the spheres is set to
unity. Thus the parameters of the model are the bonding
volume K, the ratio of the square-well energy esw to the
mean-field energy emr, and the size n of the permitted
ring. Once these parameters are set, a temperature and
density may be selected, and, as discussed earlier, Egs.
(16) and (17) may be solved iteratively for X, and X¢
in order to give the free energy and pressure. Once X
and X are known the fraction of rings can be calculated
from Eq. (9), which is just the number density of rings
divided by 0. So from Eq. (9) the fraction of rings is
1-X%/Xo.

The numerical solutions are simpler for the fluid of
associating chain molecules; the mass action Eq. (35) is
rewritten for a homogeneous fluid

1=X+X?A+ A. (41)

X
—  W,_
1+ XorA !

On the right-hand side the first term is the fraction of
molecules with a site of type A free, the second term
is the fraction of sites of type A which are part of an
intermolecular bond, and the third term is the fraction of
sites of type A that are part of an intramolecular bond.
In this case the symmetry between the A and B sites
means Eq. (41) applies equally to the sites of type B.
Equation (41) can be solved for X; this value for X will
give the free energy when inserted in Eq. (37) and the
number of rings when substituted in the last term of Eq.
(41). For the solution of nonlinear equations such as Eq.
(41), see [19]. Note that an analytical solution is available
for the cubic equation, but that the numerical approach
is a little better behaved. The parameters are the same
as before, but here n is the length of the chain, and the
mean-field interaction Eq. (40) is added per sphere of
the chain.

The chemical potential u is required to obtain the
phase diagram of these systems; the standard thermo-
dynamical relation p = (A + pV)/N for the pure fluid is
used. At coexistence the pressure and chemical potential
of the vapor and liquid phases are equal. Two simul-
taneous nonlinear equations result from these conditions
which are then solved iteratively for a given temperature
to obtain the coexisting densities and the vapor pres-
sure. The temperature scale is defined by the mean-field

parameter eyp; the reduced temperature T* = kT /emF
is used. The model can then be described by the ra-
tio esw/emr and by K. For completeness the reduced
pressure used is also stated; it is p* = (Bpn /6.

V. RESULTS AND DISCUSSION

Example calculations have been performed, and the re-
sulting phase diagrams are shown in Figs. 1-4 below. Be-
fore these diagrams are discussed the general qualitative
features of the equilibrium between single monomers and
chains and rings of monomers are examined. Using the
notation of the previous sections, if the number density
of monomers is 09, then the number of chains of length n
will be of the order of o K™ 1F25', and the number of
rings of size n will be of the order of of K" F3gW, _;.
The difference between a chain and ring of the same
length is, of course, that the latter has an extra bond
but is constrained so that the ends meet. For the equi-
librium of a chain and ring of the same length, the longer
the length, the more the equilibrium is shifted toward
the chain. Conversely, the larger the energy of associa-
tion the more the equilibrium is shifted toward the ring.
Another consideration, which is particularly relevant to
phase behavior is the competition between inter- and in-
tramolecular bonding. Intermolecular bonding sticks two
groups together to form a larger group of monomers; in-
tramolecular bonding does not. For example, consider
the fluid of associating chain molecules, or, to be more
specific, a chain of these molecules bonded together. An
end molecule can break off this chain and close up to
form a ring. Here, the net energy penalty is zero but
the number density of free species increases adding to
the translational entropy, at a cost in conformational en-
tropy of the molecule which has formed a ring. Thus
although a decrease in temperature favors chains as well
as rings, a decrease in density favors rings over chains.

In Fig. 1 the phase diagrams obtained for the associ-
ating monomers are shown. It is clear that only allowing
the fluid to form chains produces marked changes in the
phase diagram. Although the scale of the graphs is too
coarse to show it, even in the more weakly hydrogen-
bonded system with n = 6 the vapor pressure far from
the critical point is much higher than for the case with
only chains. The vapor pressure is consistently increased
by allowing ring formation. It is also worth noting that,
apart from increasing the vapor pressure at low tem-
peratures, allowing the fluid to form rings makes little
difference unless the hydrogen bonding is strong. Al-
though it is not shown, the curves for the systems with
esw/emr = 2 are almost superimposed. This does not
mean that rings are not formed for esw/emr = 2, as is
shown in Fig. 2. The number of rings is small but the
behavior as the temperature changes is interesting.

This behavior results from the extreme sensitivity of
the ring-closing equilibria to temperature and density. At
low temperatures the vapor phase has a larger number of
rings, but as the temperature is increased and the density
of the coexisting vapor increases, the number of rings
in the liquid becomes greater than in the vapor. This
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crossover occurs close to the critical point.

The phase diagram for the associating chains is shown
in Fig. 3 and the fraction of rings along the coexistence
curve is shown in Fig. 4. The dramatic change in the
phase behavior for the larger esw/emp ratio is evident.
If Figs. 3 and 4 are compared it is seen that in the case
of the smaller esw/emr ratio the number of rings in the
two phases is very similar near the critical point, and that
the critical point is close to that of the system which only
forms chains. In contrast, for the larger esw/emr ratio
the fraction of rings in the two phases quickly diverges
below the critical point and the critical point is far from
that of the system in which only chains are allowed. As
for the associating monomers, the fluids which are al-
lowed to form rings are much more volatile far from the
critical point. However, for the case of esw/emr = 2

0.008
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0.004

0.0024

0.015

0.15 0.2 0.25

FIG. 1. The figure shows the phase diagram for a fluid
of associating monomers with free energy Eq. (18). The
curves, of course, all end at the critical point. In both graphs
K = 8.7791 x 10~*; this corresponds to a square well dis-
placed 0.4 from the center of the sphere with a range of 0.3
[11], but note that a different convention is used for K in this
reference. The solid curves are for the previous theory with
chains only, the dashed curves for n = 6, and the dot-dashed
curves for n = 4. The top graph corresponds to esw/emr = 4
and the lower graph to esw/emr = 3.
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FIG. 2. The fraction of rings X along the coexistence
curve is plotted against T*. This is for the associating
monomers with free energy Eq. (18). The gas phase has
the larger number of rings at low temperature. esw/emr = 2,
K =8.7791 x 10™%, and n = 6.

0.025

0.021

0.0151

0.01

0.005 A

0.025 1
0.024
0.015 1
p*

0.01 1

0.005 1

T T —
0.15 0.2 T* 0.25

FIG. 3. The figure shows the phase diagram for a fluid
of associating chains. K = 8.7791 x 10~* and both lines
correspond to chains of six spheres. The dashed line is for
chains with the free energy of Eq. (37) while the solid line is
for association only into chains, i.e., the earlier theory without
the ring graph. The top graph corresponds to esw/emr = 4
and the lower graph to esw/emr = 2.
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FIG. 4. The fraction of the chain molecules with free energy
Eq. (37) which have formed rings, in the coexisting vapor
and liquid phases, is plotted against T. The dashed curve
is for esw/emr = 4 and the solid curve for esw/emr = 2.
Hence, the dashed curve corresponds to the dashed curve in
the top graph in Fig. 3 while the solid curve corresponds to
the dashed curve in the bottom graph of Fig. 3. Note that
the gas phase is to the right of the critical point, i.e., there
are more rings in the gas phase.

the p*T projection crosses that of the system which only
forms chains.

VI. CONCLUSION

The original approximation of Wertheim has been ex-
tensively tested against computer simulation data [11,20]
and found to be highly accurate despite its simple

form. The obvious question is: What is the accuracy of
the present approximation? In approximating the ring
graphs the end-to-end distribution of a chain of hard
spheres has been replaced by that of a freely jointed
chain. Although this may be reasonably accurate for long
chains at high density, it will overestimate the probabil-
ity W,,_, for our shorter chains. The effect of excluded
volume on the properties of chains has been studied ex-
tensively, and these results could be employed to improve
W, _1. Of more relevance to real fluids is a model with
fixed &, or with ¢ allowed to vary over a narrow range;
for hydrogen fluoride at least the conformation of the ring
clusters seems to be determined by the need to keep the
optimum FHF angle [9]. For the chain models the corre-
sponding real molecules would commonly have a carbon
backbone, which has been modeled as a chain with fixed
angles between the successive links [10]. A source of er-
ror at high density is the approximation in going from
Eq. (6) to Eq. (7). The low density graph should be
decorated with an n-body cavity distribution function of
the actual, not the reference, fluid. Assuming the con-
tacts are independent works well for chains, and has been
tested in the limit of complete association [12].

Finally, there is a recent study [21] in which the closing
of quite large chains to rings was examined. It should
be noted, however, that this was for a two-dimensional
lattice system.
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